Diagnostic activity in Italy, present and future perspectives

Chiara Chiapponi

Expert at the WOAH reference laboratory for swine influenza- IZSLER Italy

WOAH Reference Laboratory

for swine influenza

3-4 April 2024

Index

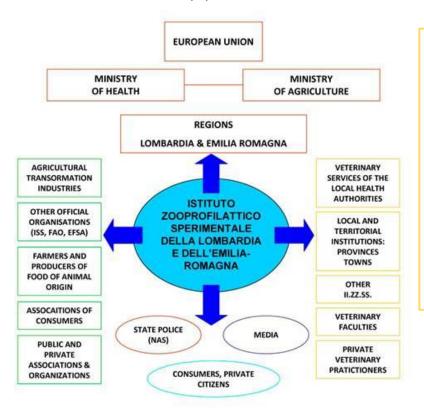
- 1. Introduction of IZSLER
- 2. Main Diagnostic activity
- 3. Future perspectives

Introduction of IZSLER

2024 - OFFLU Swine Influenza virus Technical Meeting

The Italian Experimental Zooprophylactic Institutes (II.ZZ.SS) network, with their 10 headquarters and 90 peripheral diagnostic sections, are an important operational tool available to the National Health Service to ensure

- epidemiological surveillance,
- experimental research,
- training of personnel,
- laboratory support diagnostics in the context of official control of foodstuffs

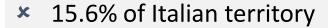

IZSLER works for....,

2024 - OFFLU Swine Influenza virus Technical Meeting

the European Union,
 Ministries and the Regions
 that issue guidelines which
 must be followed by the
 Institute

• private entities, such as organizations and associations that are directly concerned with Institute activities and which benefit from the services provided

the Public authorities, the other Experimental
 Zooprophylactic Institutes, the Veterinary services of the local Health
 Authorities which collaborate technically and scientifically with the Institute to complete functions related to hygiene and veterinary public health

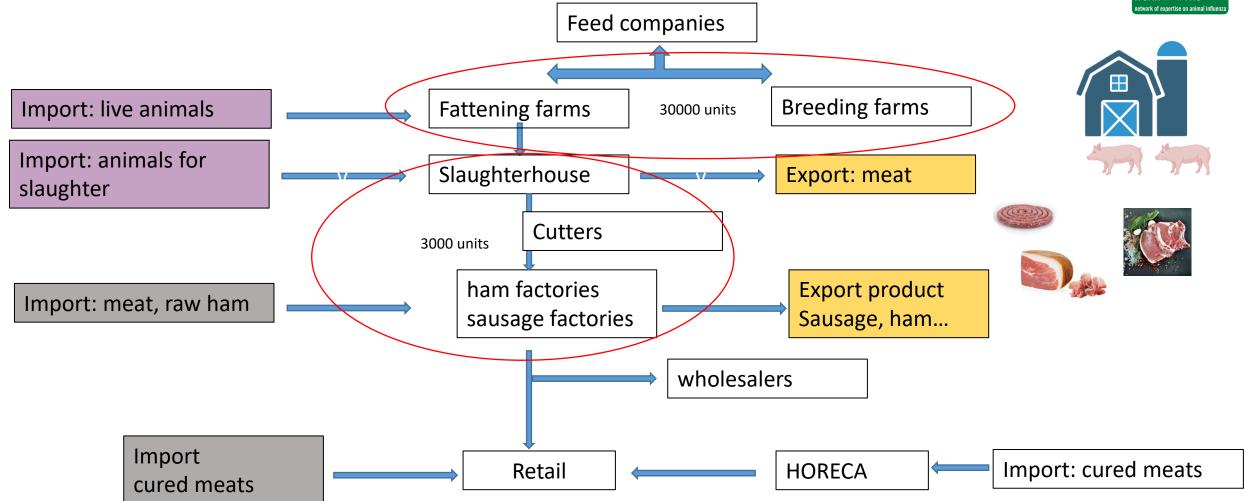

 citizens and consumers who are common stakeholders for the proper operation of the Institute and therefore the protection of the healthiness of foodstuffs, animal hygiene and health and animal products, as well as environmental hygiene



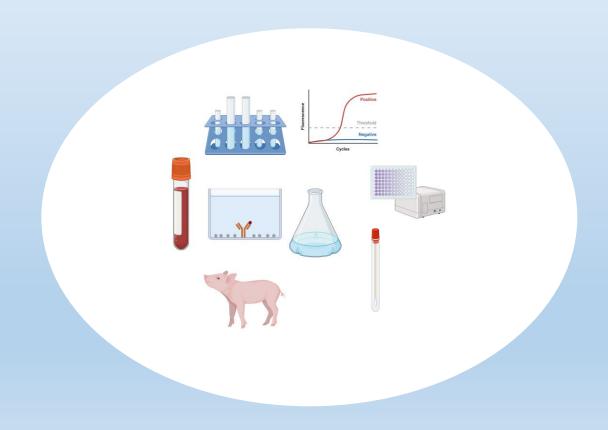
2024 - OFFLU Swine Influenza virus Technical Meeting

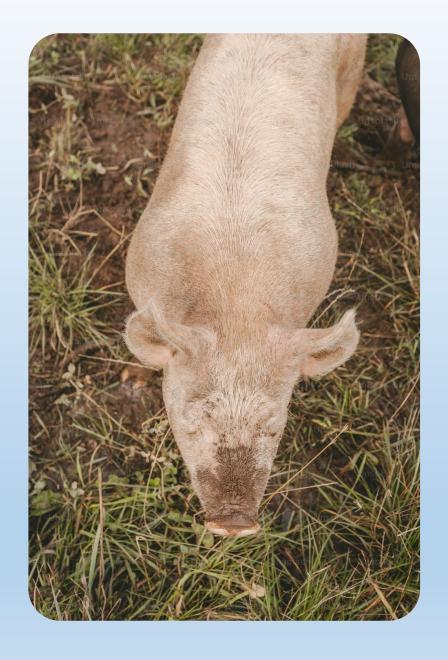
offlu						
WOAH	FAO					
network of expertise on animal influenza						

Jurisdiction Area	LOMBARDIA	EMILIA ROMAGNA		
Km ²	23,863	22,456		
Municipalities	1527	334		
Inhabitants	10,103,869	4,467,118		
ASL (Sanitary Districts)	8	8		

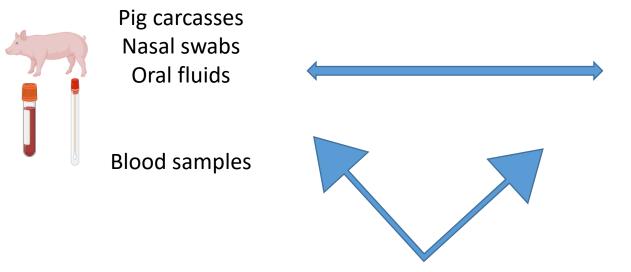

- 24.5% of farmed animals (35% of cattle, 62% of pigs (5 million of pigs), 10% poultry)
- **★** 1.42 pigs/10000 inhabitants
- >70% pigs e about 35% of bovine slaughtered at national level
- ✗ About 40% of Gross National Product (GNP)

Pig production chain


2024 - OFFLU Swine Influenza virus Technical Meeting

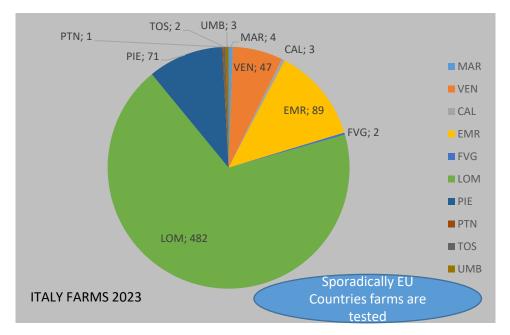


IZSLER Diagnostic activity



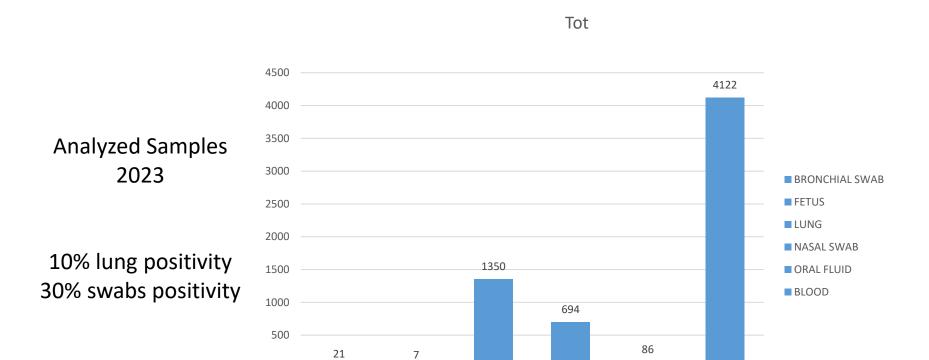
Swine influenza viruses sources

Routine diagnostic submissions to IZSLER laboratories: NO National surveillance plan in pigs


Field veterinarians
Private companies

Virological diagnosis Serological diagnosis ????

Deep virological investigations Italian/EU National funding for research purpose



Swine influenza viruses sources: passive surveillance

LUNG

NASAL SWAB

ORAL FLUID

VIROLOGICAL DIAGNOSIS

FETUS

BRONCHIAL

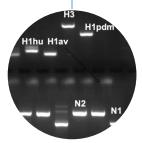
SWAB

SEROLOGY

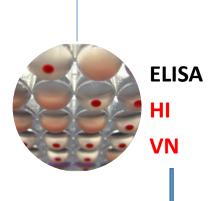
BLOOD

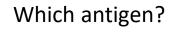
Laboratory diagnosis

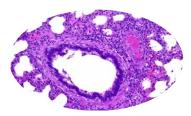
2024 - OFFLU Swine Influenza virus Technical Meeting

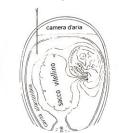

histopathology

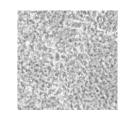
One-step real-time RT-PCR -Screening


Molecular characterization


Subtyping PCR/NGS Genomic sequencing




Serum



VS

- Confirmation
- ► HA/ELISA
- ► HI
- ► PCR/NGS

Subtype_HAclade_NA_PB2_PB1_PA_NP_MP_NS

72	В	H3N2_H3[84]_N2g_av_av_av_av_av_av							
H3N2	36	H3N2_H3[2010]_It-N2_av_av_av_av_av_av							
H1N2		H1N2_1C.2.4_N2g_pdm_pdm_pdm_pdm_pdm_pdm							
	\vdash	H1N2_1C.2.2_N2g_pdm_pdm_pdm_pdm_pdm							
		H1N2_1A.3.3.2_N2g_pdm_pdm_pdm_pdm_pdm_pdm							
	~	H1N2_1A.3.3.2_2009_N2g_pdm_pdm_pdm_pdm_pdm_pdm							
	ш	H1N2_1B.1.2.2_It-N2_av_av_av_av_av_av_av							
	ш	H1N2_1B.1.2.1_N2g_av_av_av_av_av_av							
		H1N2_1C.2.5_N2g_av_av_av_av_av_av							
	_	H1N2_1C.2.4_N2g_av_av_av_av_av_av							
	Ω	H1N2_1C.2.2_N2g_av_av_av_av_av							
		H1N2_1C.2.1_N2g_av_av_av_av_av							
	AH	H1N2_1C.2.4_N2g_pdm_pdm_pdm_pdm_pdm_av							
	38	H1N2_1A.3.3.2_N2g_pdm_pdm_pdm_pdm_pdm_av							
	35 38 AH	H1N2_1C.2.4_N2g_pdm_av_pdm_pdm_pdm							
	33	H1N2_1C.2.4_N2g_av_av_av_av_pdm_av							
	26	H1N2_1C.2.4_lt-N2_av_av_av_av_av							
	9	H1N2_1C.2.4_lt-N2_av_av_av_av_av							
	S	H1N1_1A.3.3.2_N1av_pdm_pdm_pdm_pdm_pdm_pdm							
	۵	H1N1_1A.3.3.2_N1pdm_pdm_pdm_pdm_pdm_pdm_pdm							
	Σ	H1N1_1C.2.5_N1av_av_av_av_av_pdm_av							
	_	H1N1_1C.2.2_N1av_av_av_av_av_pdm_av							
H1N1		H1N1_1C.2.5_N1av_av_av_av_av_av_av							
	⋖	H1N1_1C.2.2_N1av_av_av_av_av_av_av							
	_	H1N1_1C.2.1_N1av_av_av_av_av_av_av							
		H1C.2.4_N1av_av_av_av_av_av_av							
	39	H1N1_1A.3.3.2_N1av_pdm_av_pdm_pdm_pdm_pdm							
	37	H1N1_1A.3.3.2_N1av_pdm_pdm_pdm_pdm_av_av							
	34	H1N1_1C.2.5_N1av_pdm_pdm_pdm_pdm_pdm_av							
		H1N1_1C.2.1_N1av_pdm_pdm_pdm_pdm_pdm_av							
	31	H1N1_1A.3.3.2_N1av_pdm_pdm_pdm_pdm_pdm_av							
		0	00%	5,00	%	10,00%	15,009	2/6	20,0
		0,	00/0	2,00	, -	_0,0070			,

~100 sequenced strains/year Deep investigation allow us to identify high variability

What about serological investigation?

The National influenza pandemic plan

Multidisciplinary network of experts called DISPATCH

(epiDemic Intelligence, Pandemic Scenarios, risk assessment)

Ministry of Health
Coordinator

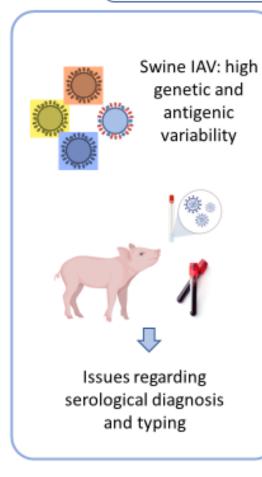
RespiVirNet Network

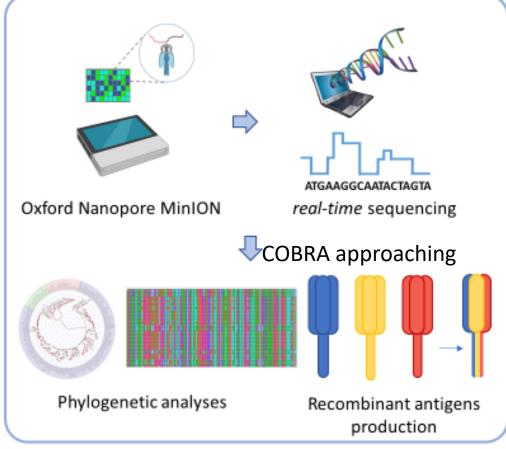
Italian network for epidemic intelligence

Regional contacts

Public health contacts

Relevant institutions (university, microbiology associations, research institute, IZSS)


Future perspectives




2024 - OFFLU Swine Influenza virus Technical Meeting

Chasing variability: development and application of new diagnostic strategies of molecular and serological genotyping for swine influenza viruses

Thank you

Special thanks to the swine influenza team:

Alice Prosperi

Ana Moreno

Laura Soliani

Ada Mescoli

Irene Zanni

Laura Baioni

Andrea Luppi

