

OFFLU virtual SIV group meeting 9 December 2020

Ariel Pereda

INTA - Argentina

SIV surveillance in Latin

America

Groups contacted w/ SIV surveillance records in the regions

- Mexico
 - Centro de Investigación en Alimentación y Desarrollo
- Chile
 - Universdad de Concepción
 - Universidad Católica de Chile
 - Universidad de Chile
- Colombia
 - Universidad Nacional de Colombia
- Guatemala
 - Universidad del Valle de Guatemala
- Argentina
 - National Institute of Agriculture Technology

Influenza A Virus surveillance in swine in Guatemala, 2016-2020

Celia Cordón Rosales

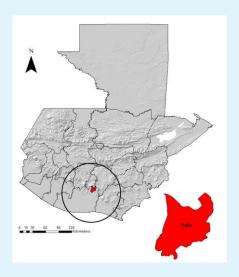
CRIP IAV in swine populations – Guatemala: 2018

Samplig site

- Farms in Chimaltenango, Escuintla,
 Guatemala, Sacatepéquez y Santa Rosa (high prevalence in previous surveys)
- Nasal swabs prioritizing animals with clinical like-flu signs (nasal secretion, ocular secretion, cough and / or sneezing).
- Antibodies tested in samples from Classical Swine Fever survey across the country.

Results:

- A) Selected farms on the prioritized departments:
- 6.8% (36/524) swabs tested IAVpositive by RRT-PCR.
- 15.8% (83/523) serums tested Antibodies-positive by ELISA.
- 2.7% (16/523) individual positive for AIV in PCR and ELISA.
- B) National surveillance of Classical Swine Fever Serum Survey:
- Total of 1,024 sera receive and 368 processed by pools (2-6 samples/pool) or individually
- 10.0% (37/368) were positive by ELISA


Swine IAV infection rate in Guatemalan swine populations has ranged from 6-12% during the last 10 years. Antibody prevalence seems high in 2018 (16%)

CRIP IAV surveillance in swine - Guatemala: 2016-2018

Samplig site

- Active surveillance in Escuintla, Southern region of Guatemala
- Nasal swabs collected weekly from sick animals (rectal temperature, sex, respiratory signs)
- Age of sampled pigs ranged from 6 to ≥24 weeks (and sows when possible)
- Pigs were tattooed to avoid re-sampling

Results:

- 12% (251/2094) swabs tested IAVpositive by RRT-PCR
 - Two high infection periods were detected trough the surveillance period
- All samples were identified as H1N1 by NGS (H1 swine clade 1A.3.3.2)
 - Phylogenetic analysis on HA and NA genes revealed samples are clearly separated from other sequences of human and swine A/H1N1pdm09 viruses circulating in Central America within the same time frame and in the previous 7 years.
- 10 amino acids mutations were present in HA1 relevant sites

Guatemalan viruses represent a unique group of sequences, suggesting independent evolution from other A(H1N1)pdm09 viruses circulating in Central America and whose zoonotic risk remains to be determined.

Argentina

Influenza A Virus surveillance in swine in Argentina

Javier Cappuccio, Marina Dibárbora, Daniel Pérez

Subtypes characterized in Argentina (2008-2015):

- 59 isolates:
 - 39 H1N1pdm09
 - 13 H1N2 human like
 - -12 1B.2.1 HA swine lineage and 1 1B.2.2 HA swine lineage)
 - 5 H3N2 Human like
 - 2 H1N1 human like (1B.2.1 HA swine lineage)

Contract Year	Nasal Swabs +/Total (%)	Lungs +/Total (%)	Farm +/Total (%)
2015-2016	80/485 (16)	8/31 (26)	9/15 (60)
2016-2017	9/22 (41)	26/71 (36)	13/30 (43)
2017-2018	22/107 (20)	28/177 (16)	19/35 (54)
2018-2019	43/258 (17)	19/187 (10)	15/49 (30)
2019-2020	6/26 (23)	21/124 (17)	7/27 (26)
2020-2021 (dec)	6/6 (100)	23/131 (17)	9/30 (30)

Farms Locations

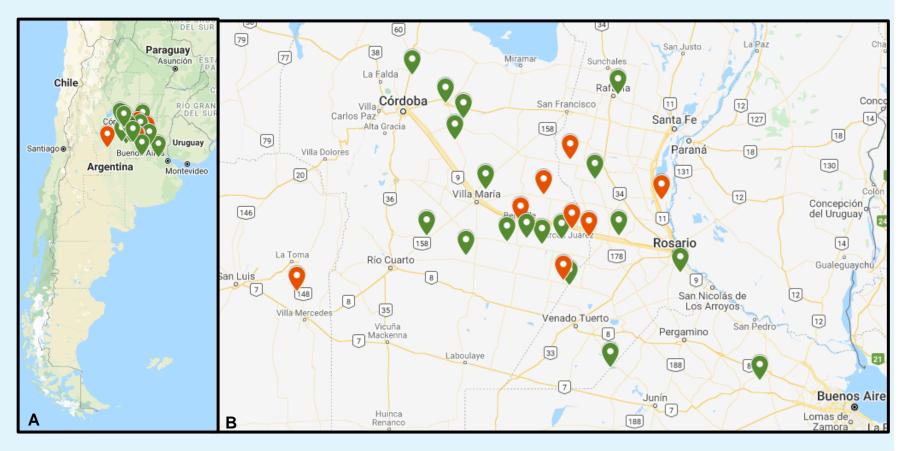


Figure JC01. Location of farms analyzed in this period. Red dots represent positive influenza A farms by RRT-PCR (n=7). Green dots represent negative influenza A farms by RRT-PCR (n=27).

Province	Positive	Negative	Total
Cordoba	4	11	15
Buenos Aires	0	1	1
San Luis	1	0	1
Santa Fe	2	6	8
Unknown	0	2	2
Total	7	20	27

Table JC01. Number of positive and negative farms analyzed by province.

Type of sample	Positive	Negative	Total
Nasal swab	6 (4)	20 (13.3)	26 (17.3)
Lung	21 (14)	103 (68.7)	124 (82.7)
Total	27 (18)	123 (82)	150 (100)

Table JC02. Number of positive and negative samples by type of sample. Percentage are presented between brackets

130 RNA's form these samples were sent to UGA for full length sequencing

Thanks for your kind attention

