

OFFLU avian influenza virus characterisation meeting 29 – 30 March 2017 FAO Headquarters, Rome, Italy

HPAI virus evolution and vaccination in Indonesia

Ernes Andesfha¹ Hendra Wibawa^{2,3}

- ¹ National Veterinary Drug Assay Laboratory, Directorate General Livestock and Animal Health Services - Indonesia, JI. Raya Pembangunan, Gunung Sindur, Bogor, Indonesia
- ² Disease Investigation Center Wates, Directorate General Livestock and Animal Health Services - Indonesia, JI. Wates KM 27, Kulon Progo, Yogyakarta, ____ Indonesia
- ³ Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 GL, Utrecht, The Netherlands

Current Situation

Poultry Production Type

Sector 1

Industrial integrated system; high level biosecurity

Semi-vertical integrated system; Moderate level biosecurity

Sector 3

Small commercial poultry production; low level biosecurity

Sector 4

Village or backyard poultry; no biosecurity, mix farming

Population of poultry 2012-2016 (000 bird)

Source: Directorate General Livestock and Animal Health Services (DGLAHS), Ministry of Agriculture Indonesia

HPAI H5N1 cases in Indonesia (poultry and humans)

* Fatal H5N1 humas case was reported firstly in 2005

HPAI H5N1 virus evolution in Indonesia

Circulating HPAI viruses and vaccine in use (2012-now)

HPAI Subtype : H5N1

Clade 2.1.3.2 (group "a" and group "b"):

- Major circulating virus between 2008 and 2012
- No more detected in poultry since 2015, except in Sumatra

Clade 2.3.2.1 (group "c"):

- Detected in late 2012 causing high mortality in ducks
- Recently detected in various species including ducks, native chickens, layers, broilers, quails, pigeons, eagle
- Reassortant viruses with HA-NA-NP-PB1(2.3.2.1c) + PB2-M-NS (2.1.3.2)
- Become dominant and seems to replace Clade 2.1.3.2 viruses

HPAI H5N1 seed vaccine in use

Clade 2.1.3.2 (local strains):

- A/chicken/West Java/PWT-WIJ/2006
- A/chicken/West Java/Nagrak(30)/2007
- A/chicken/Rumtang/Tangerang-019/2009

Clade 2.3.2.1 (local strain):

A/duck/Sukoharjo/BBVW-1428-09/2012

Vaccines are produced locally by the Indonesian companies:

1 Government:

- Pusat Veterinaria Farma
- 5 Private Industries:
 - Vaksindo Satwa Nusantara
 - Medion Farma Jaya
 - Sanbio Laboratories
 - Caprifarmindo Laboratories
 - Shigeta-IPB

Current Vaccination Strategy

Vaccination Strategies

Phase 2004-2006:

- Mass vaccination in mid 2004:
 - 300 M doses available
- Inactivated H5N1 local isolate (Legok/03-based vaccine seed)
 Free of charge: backyard and small farmers (sector 4) of any species
 Mass vaccination continued in 2005 and early 2006
- > Mid 2006 due to limited vaccines targeted vaccination in sector 3:
 - Inactivated H5N1 local isolate
 - Inactivated LPAI vaccine (H5N2)
- Vaccination in sectors 1, 2 and 3 (breeders and layers)
 - At their own cost
 - With coverage estimated to be 90% in commercial layer and 100% in breeding flocks

Phase 2007-2011:

- Vaccination in sector 4 discontinued due to logistic problems and task of administrating vaccines to free-ranging birds
- Continued targeted vaccination of some populations in high risk/endemic areas for small-holder commercial farms (Sector 3) done by the district livestock services (Dinas Peternakan)
- Vaccination in sectors 1, 2 and 3 (breeders and layers) at their own cost

OFFLU Projects started for the selection of master seed vaccines and challenge antigens based on genetic (phylogenetics), antigenic

cartography and challenge studies.

Vaccination Strategies (Phase III: 2011-Now)

- Recommendation from OFFLU Meeting Oct-2010 (at this stage clade 2.1.3.2 was dominant H5N1 virus circulating in poultry). Master seed AI Vaccine in Indonesia (local isolates) :
 - 1. A/chicken/West Java/PWT-WIJ/2006
 - 2. A/chicken/Pekalongan/BBVW-208/2007
 - 3. A/chicken/Garut/BBVW-223/2007
 - 4. A/chicken/West Java (Nagrak)/30/2007

Challenge strains (local isolates):

- 1. A/chicken/West Java-Subang/29/2007
- 2. A/chicken/West Java/SMI-PAT/2006
- The vaccine that uses virus seed other which has been set by the government, particularly those of **imported vaccines**, then immediately **withdrawn from circulation and ended in December 2011**.
- Another seed vaccine (A/duck/Sukoharjo/BBVW-1428-9/2012) was introduced following the introduction and spread of Clade 2.3.2.1c viruses since 2012.
- Vaccine companies are allowed to make monovalent or bivalent vaccines from combination of reference strains of clade 2.1.3.2 and clade 2.3.2.1, or use their own seed strains as long as originated from local isolates and they must be characterized antigenically (in DIC Wates) and pass from vaccine registration assays (in NVDAL)

AI Vaccines use from 2004 - 2016

(source: POH-DGLAHS, 2016)

Since 2011 vaccines with only recommended seed strains or other local H5N1 strains (that passed from challenge trials) are permitted to be used in poultry (DG decree : No.3345/Kpts/LH.430/7/2011, 13 July 2011)

Mechanism:

Post-release vaccine monitoring Al virus monitoring

Post-release Al vaccine monitoring 2013 and 2015

	Monitoring AI	Vaccine		
Methode	 Collect vaccine products that used by farmers from the field Potency Test by HI Test in NVDAL 			
Antigen	1. A/chicken/West Java /Subang/29/2007			
	2. A/duck/Sukoharjo/BBVW 1428-9/2012			
Year	2013	2015		
Number of Province	10	15		
Number of District/ City	16	25		
Number of Vaccine	16	30		
Strain Seed vaccine	A/ck/WJ/PWT- NIJ/2006	A/ck/WJ/PWT- NIJ/2006		
		A/duck/sukoharjo/BBVW-1428-9- 2012		
		Source: Virology Lab - NVDAL		
OIE FAO				

Result of post-release vaccine monitoring 2013

	District/ City	Number of Vaccine	Seed	Ag Subang	Ag Sukoharjo
Province			Vaccino	Persentase 90% titer	Persentase 90% titer
			vaceme	> 4 Log 2	> 4 Log 2
North Sumatera	Binjai	1		100%	90%
	Langkat	1		100%	100%
Lampung	South Lampung	1		90%	80%
West Java	Cianjur	1		30%	0%
	Sumedang	1		80%	40%
Banten	Serang	1		100%	100%
	Tangerang	1		70%	60%
Central Java	Sragen	1	H5N1 Clade	40%	20%
DIY	Kulonprogo	1	2.1.3	100%	100%
	Bantul	1		90%	90%
East Java	Kab.Blitar	1		100%	100%
Bali	Denpasar	1		100%	100%
	Denpasar	1		100%	60%
South Sulawesi	Pare Pare	1		100%	100%
	Sidrap	1		90%	90%
West Kalimantan	Singkawang	1		70%	70%
TC	DTAL	16			

INTERPRETATION

9 vaccines (orange) showed high protection against virus challenge 2.1.3 and 2.3.2

2 vaccine (purple) showed high protection against virus challenge 2.1.3 but protection < 90% against virus challenge 2.3.2

5 vaccine (yellow) showed low protection against virus challenge 2.1.3 and 2.3.2

Report on Jurnal NVDAL. ISSN : 0852-9612, No. 21. 2014

bbpmsoh.ditjennak.pertanian.go.id

Emilia, Ramlah, Rahajeng Setiawaty, Yati Suryati – Virology Lab -NVDAL

2015

		Total of — Vaccine —	Number of Vaccine		
Vaccine Code	Strain Seed Vaccine		Ag Subang		
			90% titer > 4 Log 2		
A (Combination ND)	A/ck/WJ/PWT- NIJ/2006	2	0 (0%)		
B (single)	A/ck/WJ/PWT- NIJ/2006	11	8 (72.7%)		
C (single)	A/ck/WJ/PWT- NIJ/2006	9	5 (55.5%)		
D (Combination ND)	A/ck/WJ/PWT- NIJ/2006	2	2 (100%)		
Interpretation					
Vaccine Code A showed no protection against virus challenge 2.1.3					
Vaccine code B & C showed high protection against virus challenge 2.1.3 althought not 100%					
Vaccine code D showed 100% high protection against virus challenge 2.1.3					

	Strain Seed Vaccine	Total of — Vaccine —	Number of Vaccine			
Vaccine Code			Ag Sukoharjo			
			90% titer > 4 Log 2			
F (single)	A/duck/sukoharjo/BBVW-1428-9-2012	4	4 (100%)			
G (single)	A/duck/sukoharjo/BBVW-1428-9-2012	1	1 (100%)			
H (single)	A/duck/sukoharjo/BBVW-1428-9-2012	1	1 (100%)			
Interpretation						
Vaccine code F. G and H showed high protection against virus challenge 2.3.2						

vaccine code F, G and H showed high protection against virus cha

Source: Khusni H, Ramlah, Yati Suryati, Ketut K.N.N – Virology Lab-NVDAL

Influenza Virus Monitoring (IVM) Network

IVM: integrated and coordinated HPAI surveillance at the molecular level conducted by veterinary laboratory network in Indonesia

Aim and Objectives:

To monitor the dynamic of influenza virus circulating in animal in Indonesia and to accelerate the reporting of virus monitoring to decision makers at the national level (including recommendation of challenge strains)

The Benefits of IVM Network approach to HPAI Surveillance :

Identification of a new clade (2.3.2.1) H5N1 virus incursion into Indonesia through genetic and antigenic analyses lead to the successful and timely development H5N1 clade 2.3.2.1 vaccine that produced locally (at PUSVETMA)

Antigenic cartography in IVM Online

The results of post vaccination monitoring show that the 2.1.3 reference antigen showed low cross protection \rightarrow significant antigenic distances of newly viruses to previously circulating virus \rightarrow need to change the challenge strain antigen

Summary

- HPAI H5N1 remains endemic some areas, particularly in Java, with Clade 2.3.2.1c now is predominant clade replacing clade 2.1.3.2.
- The quality of vaccines (antigenically match to circulating viruses and enough virus content/quantity per bach) is quite important to provide good protectivity.
- Improved surveillance including in the molecular level provide better understanding of epidemiology and virus evolution.
- Vaccination can be an important tool to reduce circulating H5N1 virus:
 - Needs adequate resources and commitment of management
 - Monitoring of circulating viruses and post-vaccination monitoring program are very crucial

Acknowledgements

- Director General Livestock and Animal Health Services, Ministry of Agriculture, Indonesia
- Director of Animal Health, Directorate General Livestock and Animal Health Services (DGLAHS), Ministry of Agriculture, Indonesia
- Director of Disease Investigation Center (DIC) Wates Yogyakarta
- Directors of DICs DGLAHS, Ministry of Agriculture, Indonesia
- Director of National Veterinary Drug Assay Laboratory, Bogor
- Head of Sub-Directorate Animal Disease Surveillances (P2H), DGLAHS
- Head of Sub-Directorate Animal Drug Administration (POH), DGLAHS
- Food and Agriculture Organization of the United Nations Emergency Centre for Transboundary Animal Diseases, Jakarta, Indonesia
- Influenza Virus Monitoring Network Laboratories in Indonesia

