OFFLU Swine Influenza Virus technical meeting, 27-28 Feb 2019, OIE Headquarters, Paris, France

Swine influenza surveillance in China

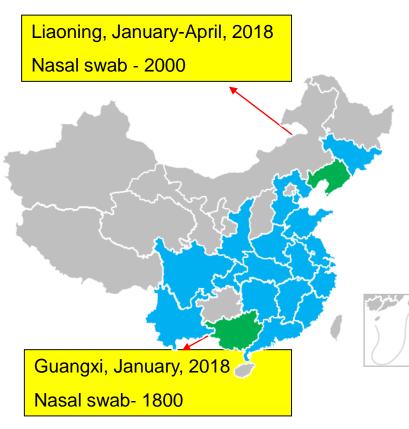
Huanliang Yang

Harbin Veterinary Research Institute Chinese Academy of Agricultural Sciences

Report including

- General Information
- The objectives of the surveillance program
- Sample collection and virus isolation
- Sequencing and analysis of viruses,2017-2018
- Serological surveillance on HI antibody detection
- Summary
- Acknowledgments

- China has about half of the world's swine population;
- China's pig production: from backyard to large-scale;
- Pigs were not routinely vaccinated against swine influenza;
- People and pigs are contact frequently. Sporadic human infection with SIVs have been occasionally reported;
- Driven by commercial profit, long distance transportation of pigs by trunks were common before August, 2018.


- Gain a better understanding of the genetic evolution of swine influenza viruses in China;
- Update diagnostic assays, and vaccine seed stock products;
- To investigate the evolution and biologic properties (virulence, antigenicity, and transmissibility) of swine influenza viruses.

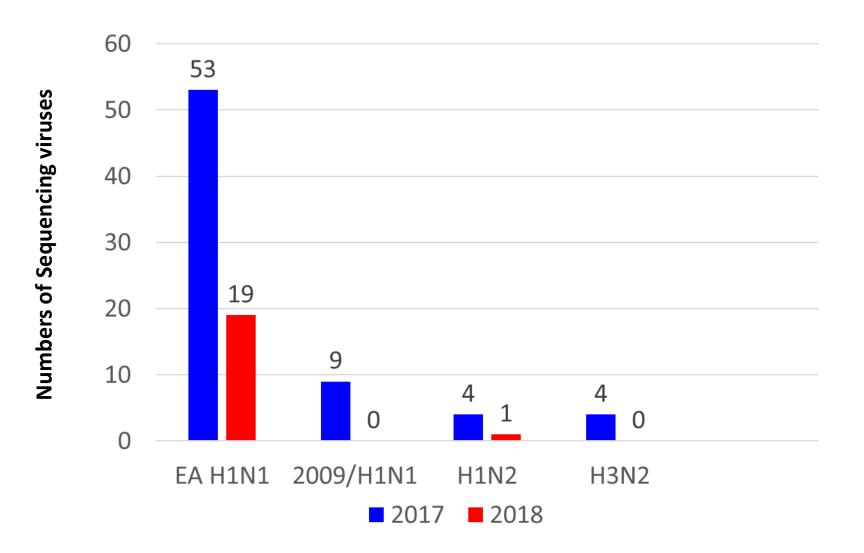
Supported by National Surveillance Plan for Swine Influenza Virus in Pigs January-April, 2018, sample collection and testing was carried out in the first stage; Over 3,800 nasal swab samples from 2 provinces were analyzed.

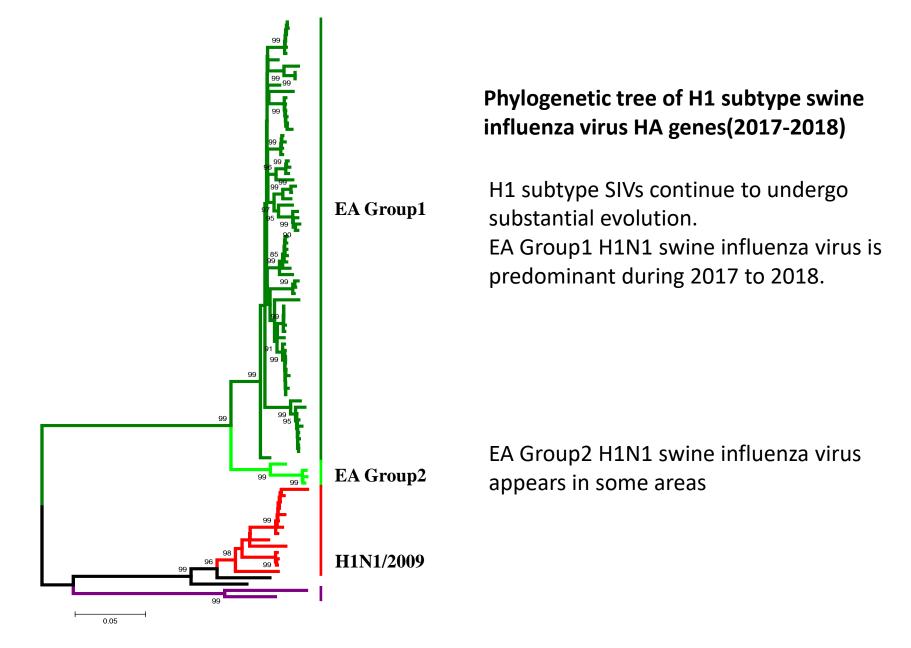
November, 2018- January, 2019, sample collection and testing was carried out the second stage; Over 15,300 nasal and tracheal swab samples from 20 provinces were collected and analyzed.

All samples were collected through abattoir-based surveillance.

Total Nasal and Tracheal swab - 19800 Serum samples - 2000+

56 strains of SIVs were isolated from samples (56/3800, 1.5%) in 1st stage, including 30 EA H1N1 SIVs isolated from Liaoning province, 25 EA H1N1 and 1 H1N2 SIVs isolated from Guangxi province, respectively.

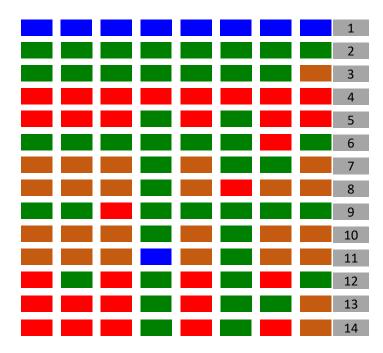

130 strains of SIVs were isolated from samples collected in 2nd stage; Work is still in progress.


Positive areas of SI, 2017-2018

Sequencing and analysis of viruses isolated from 2017-2018

To better understand the genetic relationship of H1 subtype SIVs from China, the gene segments of HA were sequenced.

Prevalence, genetics, and transmissibility in ferrets of Eurasian avian-like H1N1 swine influenza viruses


Huanliang Yang^{a,1}, Yan Chen^{a,1}, Chuanling Qiao^{a,1}, Xijun He^a, Hong Zhou^b, Yu Sun^b, Hang Yin^a, Shasha Meng^a, Liping Liu^a, Qianyi Zhang^a, Huihui Kong^a, Chunyang Gu^a, Chengjun Li^a, Zhigao Bu^a, Yoshihiro Kawaoka^{c,2}, and Hualan Chen^{a,2}

^aState Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China; ^bThe First Hospital of Harbin Medical University, Harbin 150070, China; and ^cDivision of Virology, Department of Microbiology and Immunology, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan

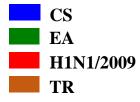
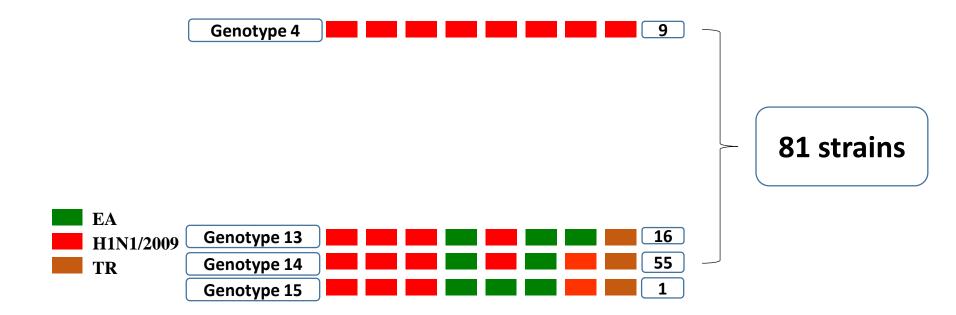
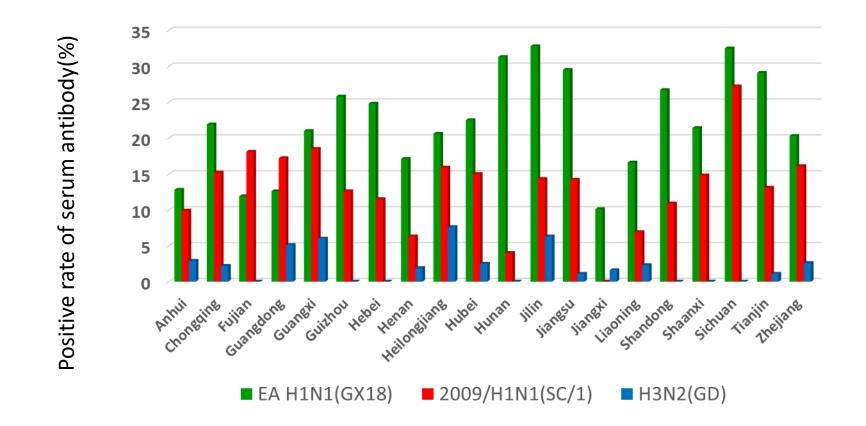

			Ferret antisera		
	Virus	HA group	SC/1/09 (SW/GX/18/11	SW/GD/104/13
	SC/1/09	2009/H1N1	1280	320	10
(SW/GX/18/11	1	320	1280	20
$\overline{\ }$	SW/GD/104/13	2	10	40	1280
	Test viruses				
	SW/HuN/26/10	1	160	640	40
	SW/TJ/47/11	1	320	320	20
	SW/HeN/232/11	1	320	640	40
	SW/HLJ/27/12	1	320	1280	40
	SW/JS/49/12	1	160	640	40
	SW/HuN/30/13	1	160	1280	20
	SW/GD/30/13	1	320	640	20
	SW/GD/306/13	2	20	10	640

Table 1. Antigenic analysis of the EAH1N1 SIVs

Genotype of H1N1 SIVs in China, 2009-2016



PB2 PB1 PA HA NP NA M NS



Genotype of H1N1 SIVs in China, 2017-2018

PB2 PB1 PA HA NP NA M NS

HI antibodies of 3561 serum samples, 2017

Results of HI test showed that the positive rates of EA H1N1, pH1N1/2009, and H3N2 were 21.1%, 13.2%, and 2.2%, respectively.

- Multiple subtypes of influenza viruses co-circulated in pigs in China during 2017 to 2018;
- EA Group2 H1N1 swine influenza viruses continue to exist in pigs;
- Triple-reassortant EA H1N1 SIVs— containing the four RNP genes (encoding PB1, PB2, PA, and NP) from 2009/H1N1 became predominant among pigs in China.

Acknowledgments

Dr. Hualan Chen

Dr. Yan Chen