

OFFLU swine influenza virus meeting 27 – 28 March 2017 FAO Headquarters, Rome, Italy

Janice Reis Ciacci Zanella

Embrapa Swine and Poultry Concordia, SC

BRAZIL

Swine influenza in Brazil

Since 2009:

 Frequent outbreaks of H1N1pdm in pigs associated with respiratory illness.

Since 2011:

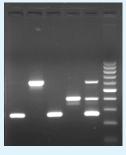
- Human-like H1N2 and H3N2 FLUAVs
 detected in swine in seven Brazilian states (RS, SC, PR, SP, MG, MT and MS).
- H1N2 and H3N2 viruses have the internal gene segments of H1N1pdm origin.

Isolation and genetic characterization of FLUAVs detected in swine in Brazil from 2009 to 2016.

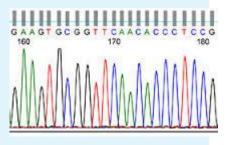
Sampling and methods

1952 nasal swabs

165 lung tissue samples

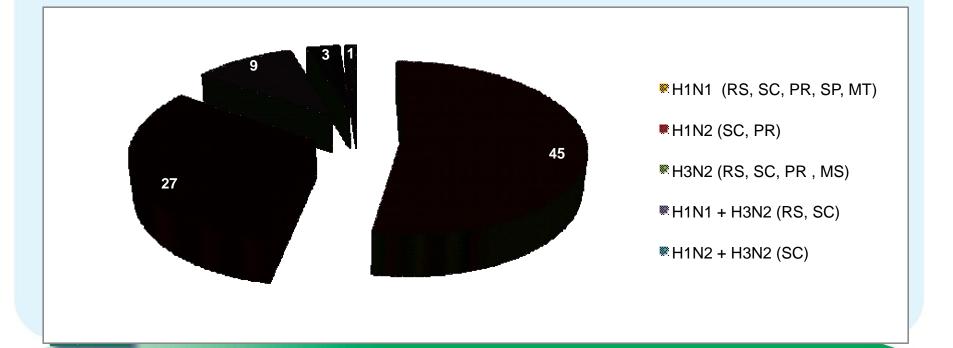


RNA Sample screened via RT-qPCR for FLUAV

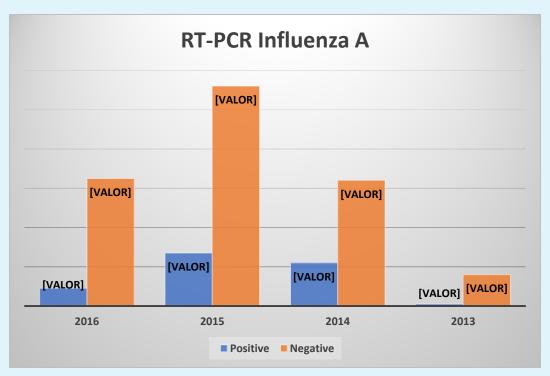


RT-qPCR + samples Inoculated for VI on ECE/ or MDCK cells

FLUAV subtyping by RT-PCR



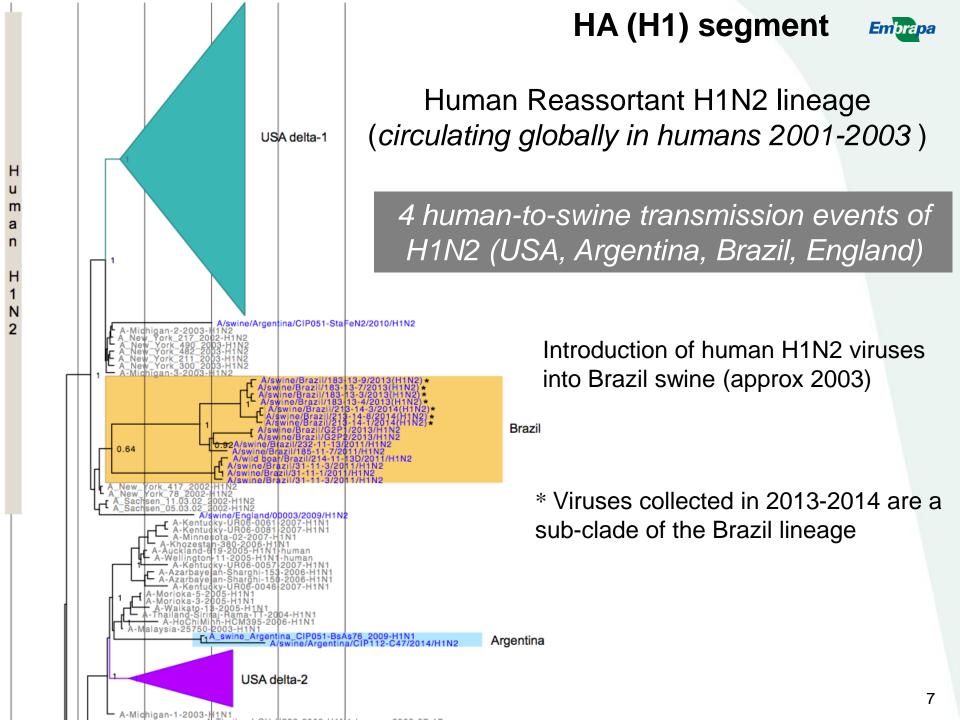
Genetic sequencing

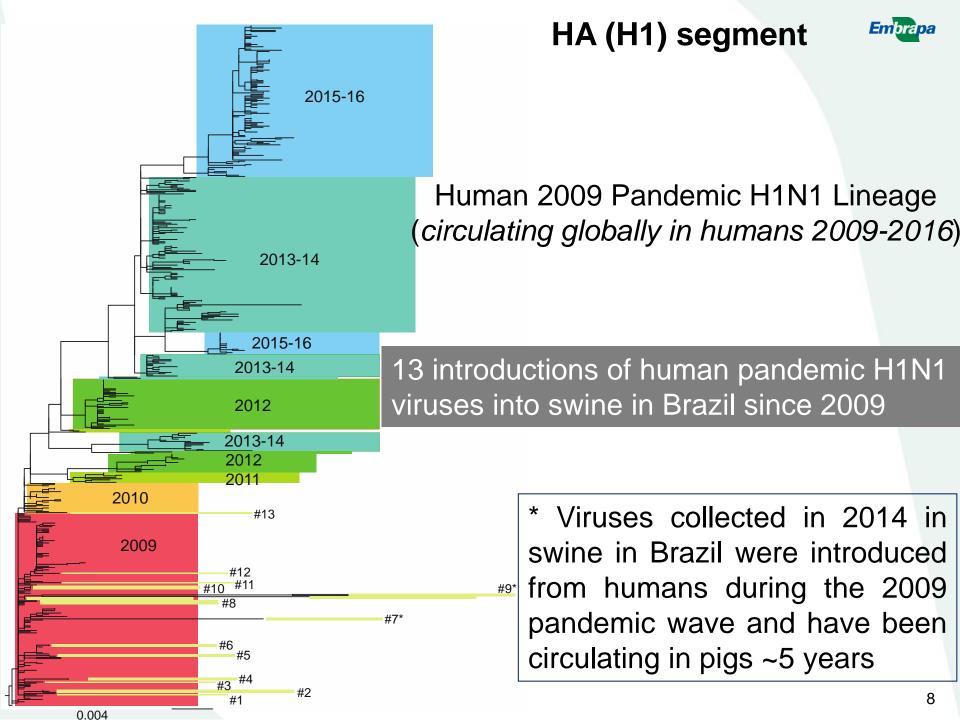


Results

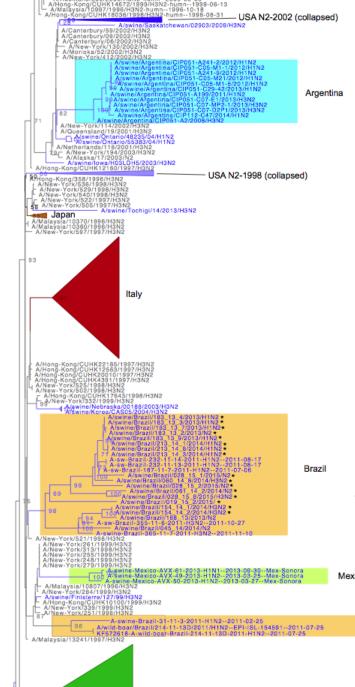
ASSAY	NO. SAMPLES
FLUAV RT-qPCR	306/2117 (14.45%)
Virus isolation	162/295 (54.91%)
FLUAV Subtyping	85/162

Results





Results

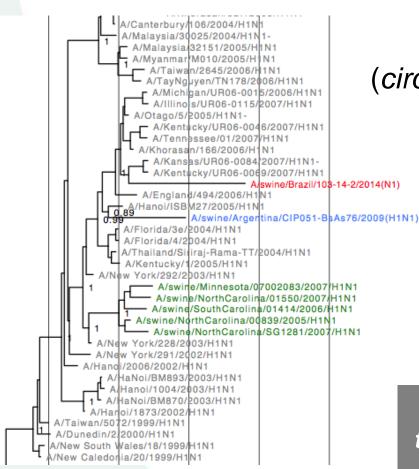

- Partial and complete gene sequences were generated for 58 FLUAVs.
- Sequence analysis of gene segments H1s, H1pdm, H3, N1 and N2.

HA (H3) segment _ 1 U I K _ 0 Z _ Z U U I _ M 3 I Y Z * I I U I I I I I I I Z * Z U A_New_York_403_2002_H3N2-human--2002-01-04 A_Morioka_52_2002_H3N2-human--2002-03-01 A_swine_Saskatchewan_02903_2009_H3N2 A_New_York_194_2003_H3N2 Human H3N2 lineage A_Malaysia_10816_1996_H3N2 A_New_York_457_1999_H3N2 A_New_York_314_1999_H3N2 (circulating globally in humans 1968-2016) A_New_York_249_1998_H3N2 A_Dunedin_1_2000_H3N2 A_New_York_180_2000_H3N2 A_Queensland_7_2000_H3N2 A_Canterbury_36_2001_H3N2 A_Malaysia_12550_1997_H3N2 A_Hong_Kong_CUHK14672_1999_H3N2 Continual human-to-swine transmission A_Hong_Kong_CUHK12312_1999_H3N2 A_Hong_Kong_CUHK10100_1999_H3N2 A_New_York_539_1998_H3N2 A_New_York_511_1997_H3N2 of H3N2 globally since 1970s A_New_York_531_1998_H3N2 A_New_York_536_1998_H3N2 A_New_York_517_1998_H3N2 A_New_York_526_1997_H3N2 A_Malaysia_13241_1997_H3N2 A/sw/Brazil/154-14-2/2014/H3N2 * Brazil A/sw/Brazil/154-14-1/2014/H3N2 * A/sw/Brazil/231-11-1-2011/H3N2 100 A/sw/Brazil/061-14-1/2014/H3 * A_sw/Brazil/028-15-8/2015/H3N2 * A/sw/Brazil/060-14-8/2014/H3N2 * USA H3-IV (collapsed) A_New_York_564_1997_H3N2 A_New_York_592_1996_H3N2 A New York 617 1996 H3N2 Thailand 1 introduction of human H3N2 viruses into swine in Brazil (approx 1996) A_New_York_562_1996_H3N2 A_Malaysia_07831_1995_H3N2 A_New_York_671_1995_H3N2 A_New_York_641_1996_H3N2 * Viruses collected in 2014-2015 are a A_New_York_609_1995_H3N2 A_New_York_693_1995_H3N2 A New York 698 1995 H3N2 new sub-clade

Thailand

NA (N2) segment

Human H3N2 lineage (circulating globally in humans 1968-2016)


Continual human-to-swine transmission of H3N2 globally since 1970s

2 introductions of human H3N2 viruses into Brazil swine (approx 1998)

* Viruses collected in 2013-2015 are in clade 1; no evidence of transmission of clade 2 since 2011

Novel introduction of human N1 into swine in Brazil (approx 2006)

Human H1N1 lineage (circulating globally in humans 1977-2009)

2 isolates with the N1 gene from 2006.

Sample 103 / 14-2 isolated in 2014 in SC, and sample 200/15 isolated in 2015 in PR.

The two samples were identified as being of subtype H1N1 in the subtyping by RT-PCR. The primer used for amplification of the HA 1 gene was designed for identification of the HA gene of human origin

Only 3 human-to-swine transmissions of H1N1 (N1) globally since 1970s

Conclusions

 H1N1pdm and human-origin H1N2 and H3N2 influenza viruses are widespread in pig herds in Brazil, where they continue to evolve.

• FLUAVs of human seasonal virus origin have been circulating in swine for more than a decade.

 These particular H3N2 and H1N2 swIAV clades appear to be specific to Brazil.

Conclusions

 A novel introduction of a human N1 in swine was detected; the most closely related human influenza virus circulated in humans between 1977 and 2009. The human-to-swine transmission probably has occurred in 2006.

 These findings show the very dynamic epidemiology of influenza virus in pigs and highlight the importance of human-to-swine transmission in the generation of influenza virus diversity in swine in Brazil.

Acknowledgements

Swine Health group:

Arlei Coldebella

Danielle Gava

Maurício E. Cantão

Marisete F. Schiochet

Marcos Morés

Nelson Morés

Neide L. Simon

Rejane Schaefer

Vanessa Haach (CNPq/PIBIC)

Collaborators:

Amy L. Vincent (ARS/USDA)

Martha I. Nelson (FIC/NIH)

Natalha Biondo (UNOESC)

Rachel R. Rech (Texas A & M)

OFFLU

Thank you

janice.zanella@embrapa.br

Funding: Embrapa CNPq MISMS/FIC