

OFFLU Swine Influenza Virus Tech Meeting OIE HQs Paris, France 27th – 28th February 2019

Ariel Pereda Animal Health Program, INTA

Argentina/Guatemala/Colo mbia/Chile

Animal Influenza in Argentina

Wild Birds:

Instituto Virología, CICYyA, INTA Dra. Agustina Rimondi / Valeria Olivera

Equine:

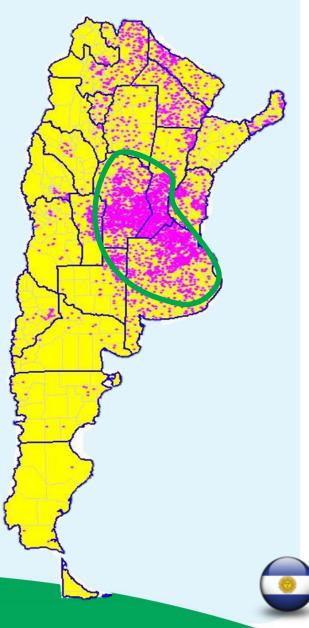
Instituto Virología, CICYyA, INTA Dra. Maria Barrandeguy (OFFLU Equine Group)

<u>Swine:</u>

Grupo Sanidad Animal, EEA Marcos Juárez Dra. Marina Dibarbora / Dr. Javier Cappuccio

IAV in Swine Surveillance in Argentina

Nº sows: 962.881


24,7% Buenos Aires 22% Córdoba 15,1% Santa Fe

- 61,8%

Stratification

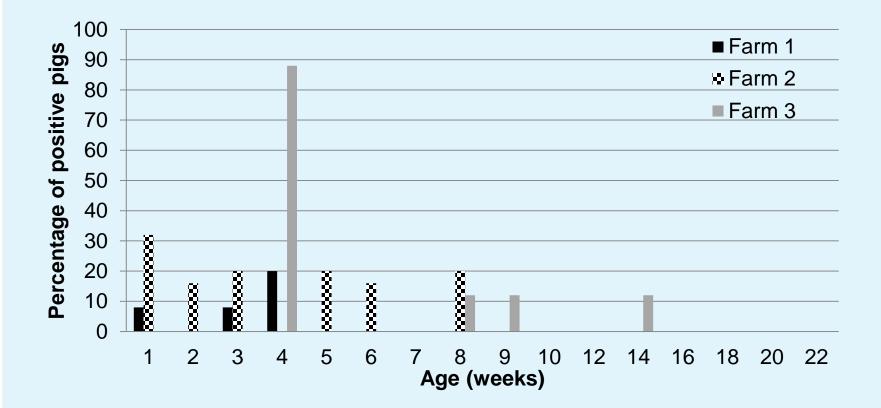
Nº sows	farm	Stock	Slaughter
< 250	59%	21%	3,5%
251-2000	30%	25%	17%
>2000	11%	54%	79,5%
Total	100%	100%	100%

Passive Surveillance

Period	Possitive Nasal Swabs /total (%)	Possitive Lungs /total (%)	Possitive Farms /total (%)
2015-2016	80/485 (16)	8/31 (26)	9/15 (60)
2016-2017	9/22 (41)	26/71 (36)	13/30 (43)
2017-2018	22/107 (20)	28/177 (16)	19/35 (54)
2018	21/167 (12)	18/133 (13)	12/37 (32)
Total	132/781 (17)	80/412 (19)	

Passive Surveillance

Subtype	Isolated (%)
1A.3.3.2 HA swine lineage (H1N1pdm09)	39 (66)
1B.2.1 HA swine lineage (H1N2 human-like)	12 (20)
H3N2 (human-like)	5 (8)
1B.2.1 HA swine lineage (H1N1 human-like pdm09)	2 (3)
1B.2.2 HA swine lineage (H1N2 human-like)	1 (1,7)
Total	59


Phylogenetic analysis of IAV isolates showed that Introductions of human viruses are not related to Brazilians or Chileans ones.

Argentina only imported breeding stock from Brazil (1,500 pig/year).

Longitudinal studies

Longitudinal studies

Farm	Pig#	age (weeks) qRT-PCR	maximum difference (in days)	
		positive	between detection	
	45	2-6	28	
	59	1-5	28	
#2	60	1-2-5	21	
	61	1-2-5	21	
	63	1-5	28	
	12	4-9	35	L NGS
	17	4-9	35	UGA
	28	4-8	38	
#3	31	4-8	28	
	35	4-8	28	
	39	4-14	70	
	34	4-14	70	

• Backyard pigs (n=228) All negative (RRT-PCR/M)

Region	Category	H1pdm09	H3
North	< 50 sows	4/10	1/10
	> 50 sows	0/0	0/0
Center	< 50 sows	9/10	4/10
	> 50 sows	18/19	1/19
South	< 50 sows	9/12	0/12
	> 50 sows	4/4	0/4
Total		44/55	6/55

HI

IAV in Swine Surveillance in Guatemala

Celia Cordon-Rosales Center for Health Studies Universidad del Valle de Guatemala

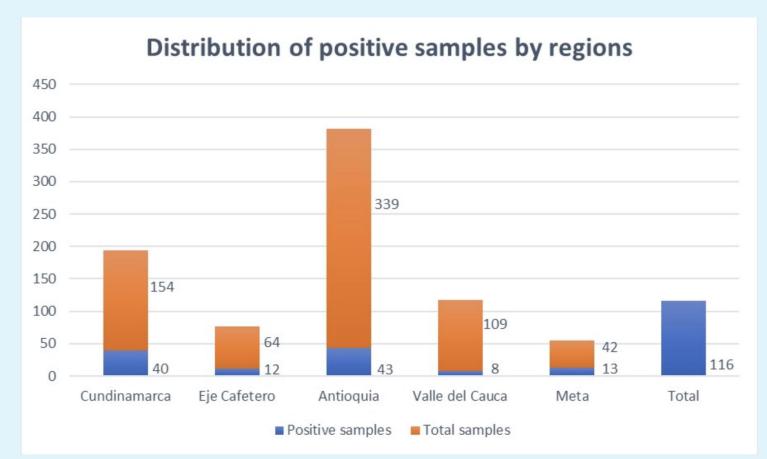
- Guatemala is the largest swine producer in Central America (1.5 millions annually)
- 66% of production in commercial farms
- 34% backyard production
- 1.7% GDP 15.8% agricultural gross domestic product

Isolation and genetic characterization in Guatemala

- 2010-2011: Three pandemic H1N1 and one seasonal human-like H3N2 virus were isolated and sequenced.
 - All gene segment of the H1N1 viruses shared >98% sequence identity with the pandemic lineage.
 - The H3N2 was closely related to human viruses that circulated in Central America in 2010 (distinct to human seasonal vaccine lineage).
- 2016-2018: full genome amplification was performed directly from swabs in 140 RRT-PCR IAV-positive swabs and sequenced by NGS.
 - Only pandemic H1N1 subtype was identify. Data analysis is ongoing.
 - Other additional 141 RRT-PCR IAV-positive swabs samples are being amplified in order to submit them for NGS sequencing.

Main results and future projects

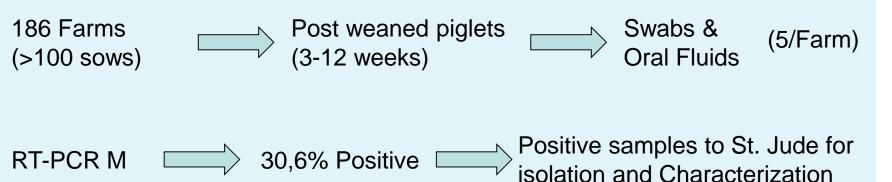
- Suveillance since 2010 in swine populations
 - Virological detection of IAV
 - 15.7% (2010), 11.7% (2011), 12% (2014) and 13.4% (2016-2018) of sampled pigs
 - Evidence of circulation of IAV of human origin in pigs
 - Phylogenetic analysis of sequences is pending
 - Serological detection of IAV
 - 10.6% (2010), 1.4% (2011) and 1% (2014)
 - Antibodies against viruses from different genetic cluster were detected
- Future projects include
 - 3rd nation-wide cross-sectional survey at commercial farms level to update information of circulating subtypes
 - Increase number of isolates for better understanding of the evolution and epidemiology of AIV
 - Contribute to establish a network of sentinel surveillance sites and its link with human disease



IAV in Swine Surveillance in Colombia

Gloria C. Ramirez-Nieto Universidad Nacional

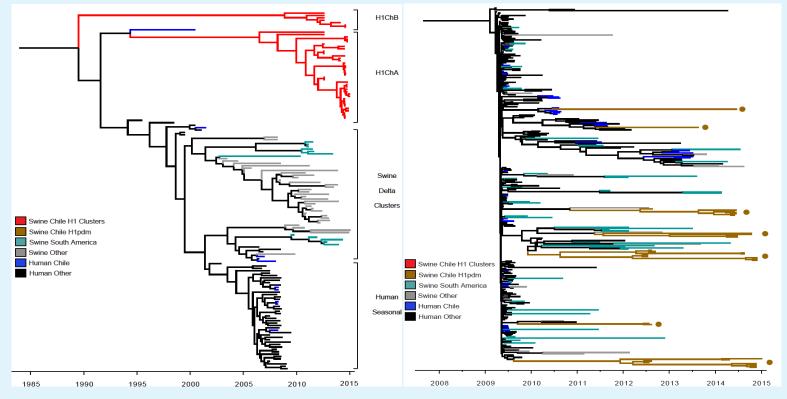
All samples isolated are related to H1pdm09 with more relation to pandemic Brazilian isolates



IAV in Swine Surveillance in Colombia

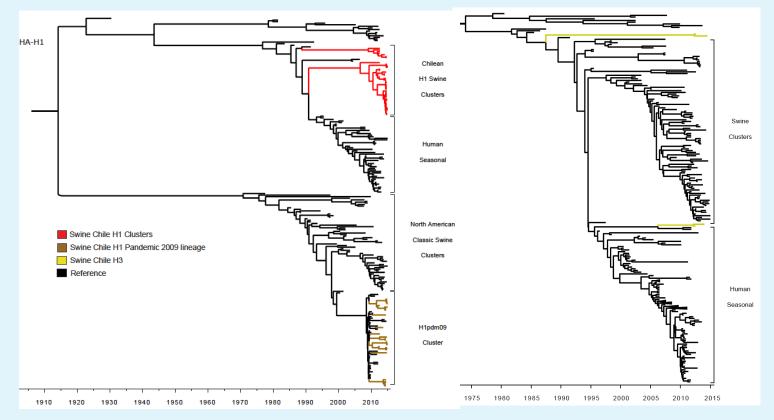
Maria Antonia Rincon Monroy Instituto Colombiano Agropecuario ICA

Agreement


- PorkColombia
- Universidad de Wisconsin Madison
- CEIRS Hospital St Jude

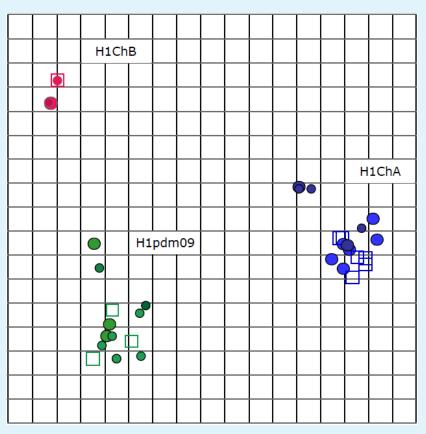
IAV in Swine Surveillance in Chile

IDENTIFICATION OF HIGH DIVERSITY HUMAN DERIVED SWINE INFLUENZA VIRUSES



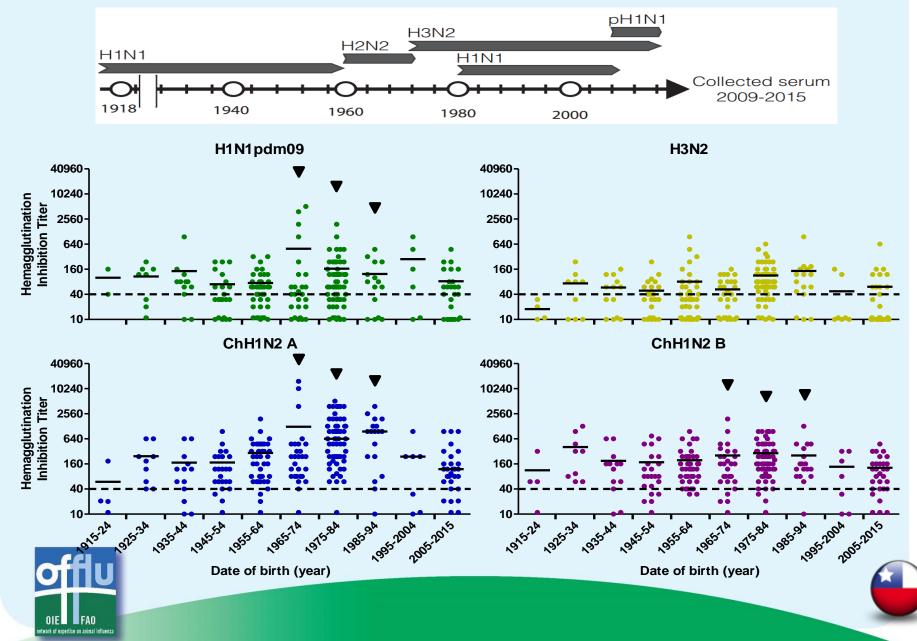
• 09H1pdm-like IAVs have been introduced at least 7 different introductions from human to swine

Multiple introductions of human seasonal IAVs results in high diversity and reassorment of swIAVs

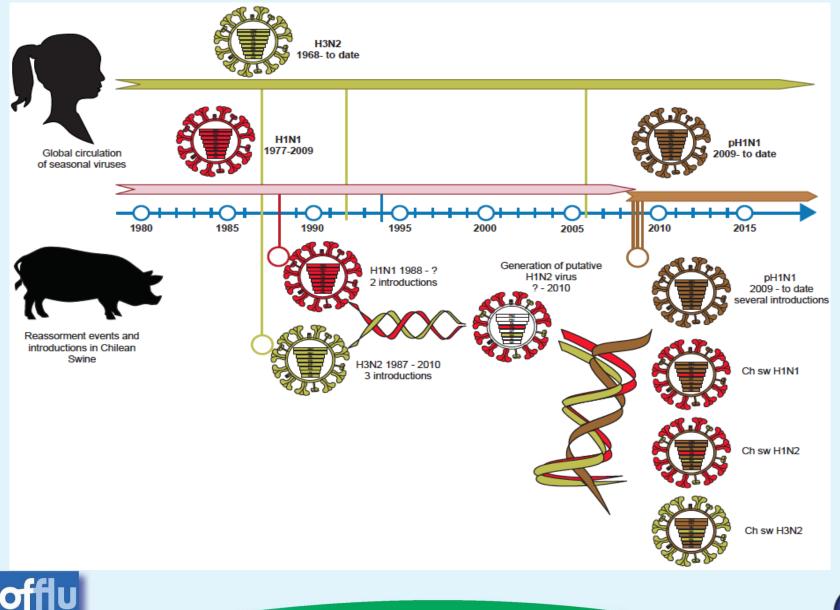

Multiple introductions of human seasonal IAVs results in high diversity and reassorment of swIAVs

- Maximum clade credibility tree reconstructed using 70 HA gene segment of influenza viruses collected from human and swine.
- TMRCA of cluster A estimated to be 1994 and of cluster B was estimated to as early as 1986.
- Molecular clock analyses for the H3 singletons was 1987 and 2006

The novel swine H1ChA, H1ChB and A(H1N1)pdm09-like genetic clusters are antigenically distinct.



- Antigenic map constructed with Hemagglutination Inhibition (HI) titers from H1ChA, H1ChB and H1pdm09 clusters.
- Circles corresponding to antigens and squares corresponding to guinea pig antisera.



The general population has limited cross-protective antibodies against the H1ChA, H1ChB and swH3N2 viruses.

Model of circulation, reassortment and viral diversity of SwIAV in Chile.

OIE FAO Retwork of experise or animal influesca

Acknowledgements

Guatemala

Universidad del Valle de Guatemala

- Lucía Ortiz
- David Moran
- Celia Cordón Rosales

UVG UNIVERSIDA DEL VALLE DE VALLE DE VALLE

CENTRO DE ESTUDIOS EN SALUD INSTITUTO DE INVESTIGACIONES

USA

University of Georgia (UGA)

- Daniel R. Pérez
- Lucas Ferreri

Icahn School of Medicine at Mount Sinai

- Adolfo García Sastre University of Minnesota
- Montserrat Torremorell
 St. Jude Children's Research
 Hospital

Colombia

Colombiana

de Porcicultores

Universidad Nacional

- Gloria Ramirez Nieto ICA
- Maria Rincon Monroy

UNIVERSIDAD NACIONAL De COLOMBIA

Chile

Universidad Católica

- Rafael Medina Silva Univ. de Chile
- Victor Neira

Argentina

- Marina Dibárbora
- Valeria Olivera
- Javier Cappuccio
- Ariel Pereda

