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1. Introduction  
Influenza A viruses (IAVs) cause recurrent epidemics and global pandemics (11). The emergence 

of a novel H1N1 swine-origin virus (H1N1 S-OIV) in 2009, and the ongoing occurrence of human cases 
of infection with avian H5N1 IAVs are only recent examples of the zoonotic and pandemic potential of 
IAVs (19, 60, 139). Different mechanisms are believed to be able to transform an animal virus to a 
human pandemic strain (64) and  these include a constellation of viral evolutionary events which are 
still to be thoroughly investigated (31, 84, 85). By enlarge, swine and avian influenza viruses cause the 
greatest concerns for public health. Understanding the molecular evolution of IAVs in the animal 
reservoir and understanding the mechanisms associated with interspecies transmission would improve 
our knowledge and prediction skills on relevant characteristics of zoonotic and pandemic influenza 
viruses (36, 98).  

 
2. Biology of IAVs 

IAVs are members of the Orthomyxoviridae family (17). On the basis of the surface glycoproteins 
hemagglutinin (HA) and neuraminidase (NA), they currently cluster into sixteen HA (H1-H16) and nine 
NA (N1-N9) subtypes (109). IAVs consist of eight segmented, single-stranded, RNA-genomes of 
negative polarity, encoding 11 proteins: polymerase polypeptides PB1, PA, PB2 (polymerase complex), 
HA and NA, nucleocapsid protein (NP), matrix protein (M1), ionic channel protein (M2), non-structural 
protein 1 (NS1), nuclear export protein (NEP) and mitochondria-associated protein (PB1-F2) (91, 131). 
The HA glycoprotein is critical for binding to cellular host receptors and for the fusion of the viral and 
endosomal membranes (143). Replication and transcription of viral RNAs is carried out by the three 
polymerase subunits PB1, PB2 and PA, and by the NP (146). Newly synthesized viral ribonucleoproteins 
(RNP) complexes are exported from the nucleus to the cytoplasm by the NEP and M1, and are 
assembled into virions at the plasma membrane (126). The NA facilitates the virus release from 
infected cells by removing sialic acid (SA) from cellular and viral HA and NA proteins (90). The functions 
of NS1 and PB1-F2 proteins will be further discussed.  

 
3. Molecular mechanism of host range restriction: receptor specificity and viral polymerase 

complex 
 

3.1 Receptor distribution 
The receptor binding site (RBS) of the HA glycoprotein recognizes the SA bond attached to 

galactose (Gal) in either alpha 2-3 or alpha 2-6 linkage (92, 137). IAVs recognize mainly two species of 
SAs, NeuAc (N-acetylneuraminic acid) and NeuGc (N-glycolylneuraminic acid), which are attached to 
galactose in SA-alpha 2-3Gal or SA-alpha 2-6Gal linkages. For instance, avian viruses preferably 
recognize SA-alpha 2-3Gal linkages, which are mainly found in the intestine and respiratory epithelia 
of birds (119, 143), whereas human influenza viruses recognize SA-alpha 2-6Gal linkages which mainly 
populate the human upper respiratory tract (URT) epithelia (74, 99, 108,137). However, towards the 
lower epithelial tract of humans, there is a relative increase of SA-alpha 2-3Gal expression (89, 94, 
104), and this has been associated with severe pulmonary pathology observed in some cases of H5N1 
infection (59, 102).  

 
Pigs are known to exhibit a dual expression of both SA linkages in the respiratory tract (72, 119, 

135), however recent studies indicate that receptor distribution is similar to the one found in humans, 
suggesting that the classical ‘mixing vessel’ hypothesis regarding the unique role played by pigs needs 
further discussion (89, 135). Concerning other species, the presence of SA-alpha 2-6Gal in the alveoli 
of dogs, cats, tigers, pigs and ferrets (130) and in the trachea of chickens and ducks has been reported 
(65); in the meantime, both types are present throughout the respiratory tract of pheasant and quails 
(149). 
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3.2 Viral characteristics of Receptor Binding Site  
The amino acid residues in the RBS of HA affect the virus host range (146). Glutamine (Q) at 

position 226 and glycine (G) at position 228 of H2 and H3 HAs confer binding to SA-alpha 2-3Gal, 
while leucine (L) and serine (S) at these positions determine binding to SA-alpha 2-6Gal. For H1 
strains, glutamic acid (E) and glycine (G) at positions 190 and 225 confer binding to SA-alpha 2-3Gal, 
whereas aspartic acid (D) at the same positions confers binding to SA-alpha 2-6Gal (4, 11, 143, 147). 

Influenza virus-receptor interactions are more complex than the simple α2–3 versus α2–6 
dichotomy on the host range restriction, suggesting that glycan species (linked to SA) and their 
topology could also play an important role (8, 94, 119). The human respiratory tract expresses only 
NeuAc, whereas NeuGc is present in other species (72). For instance, avian, human and swine IAVs 
exhibit preference for NeuAc rather than NeuGc (119). Interestingly, NeuAc is abundant in swine 
trachea and this feature could set this species as a possible adaptation and/or intermediate virus 
reassortment host in the creation of novel viruses for humans (8, 119). On the other hand, SA glycans 
are classified as having ‘umbrella-like’ and ‘cone-like’ structural topology (137) and this may also 
influence virus-receptor affinity. Recently, it has been demonstrated that human-adapted HAs bind 
with high affinity to umbrella-like topology SAs, whereas avian and swine HAs preferentially recognize 
cone-like topology. These findings indicate that glycan composition and topological changes may also 
be important determinants in species-specific switch events (143).  

 
3.3 Viral polymerase complex 
Another determinant of host restriction is the IAV polymerase complex (78, 103). The amino acid 

residue 627 in the PB2 subunit regulates polymerase activity in a species-specific fashion (56, 68). The 
PB2 derived from human viruses mainly possesses lysine (K) at position 627 (PB2-K627), whereas 
glutamic acid (PB2-E627) predominates in avian viruses (24, 121), with the exception of most of the 
H5N1 “Qinghai” descendants (145). PB2-K627 correlates with enhanced polymerase activity, virus 
replication, transmission and pathogenicity in mammals (14, 34, 56, 100), as well as with virus 
replication at 33°C temperature (human URT temperature) (78, 107, 121). 

 
4. Molecular basis of pathogenicity: role of HA cleavage, NS1 and PB1-F2 proteins 

 The HA protein is synthesized as a precursor protein that is cleaved into two subunits (HA1 and 
HA2) by host cell proteases (4). This proteolityc cleavage is a prerequisite for fusion of the viral and 
endosomal membranes to release viral RNP to the cytoplasm (90). Low pathogenic avian influenza 
viruses (LPAI) possess a cleavage site with a monobasic motif recognized by trypsin-like proteases, 
which confine viral replication to the respiratory and gastrointestinal tracts (12). In contrast, highly 
pathogenic avian influenza (HPAI) viruses possess a polybasic HA cleavage site cleavable by the 
ubiquitous furin, supporting the systemic replication (37, 120). This polybasic HA cleavage of HPAI 
viruses has originated from LPAI precursors by acquisition of a multibasic cleavage site (MBCS) under 
both experimental and natural conditions (64, 85, 86).  

 
The NS1 protein is an interferon antagonist (49, 150). The majority of IAVs NS1 proteins have a 

class 1 PDZ binding motif at the C-terminus, and its truncation results in attenuation of the virulence 
in mice, pigs and horses (49, 129), as well as in limited replication in vitro (54). Additionally, NS1 has 
been associated to an exacerbated pro-inflammatory cytokine production in humans (85, 99). On the 
other hand, PB1-F2 is a small protein encoded by the +1 alternate open reading frame (ORF) in the 
PB1 polymease gene of some IAVs. This protein is thought to be playing a role as virulence factor by 
compromising mitochondrial function and eventually leading to apoptosis (77, 136).  
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5. Evolutionary pathways and molecular mechanisms of IAVs involved in human adaptation 
 

5.1 Mutations  
Mutations result from the lack of a proof-reading activity of the IAV RNA polymerase (58). The 

rate of mutations during replication is of about 1 nucleotide change for every copied genome (4). The 
‘antigenic drift’ is associated with single point mutations in the antigen-encoding genes and is 
prompted by immunological pressure, whereas ‘antigenic shift’ occurs through the reassortment 
with the generation of a novel combination of viral gene segments (36). For transmission to humans, 
animal IAVs need to acquire the ability to recognize SA-alpha 2-6Glu as a prerequisite to igniting a 
pandemic (5, 123, 147). Key mutations of HA at positions 138, 190, 194, 225, 226 and 228 (H3 
numbering) affect receptor binding preference of several subtypes including H2, H3, H4 and H9 (7, 
133), whereas the HAs from H1 human adapted viruses bear changes at positions 190 and 225 (Table 
1) (124, 146).     

Transmission of H5N1 HPAI virus from poultry to humans was first reported in Hong Kong in 1997 
(48, 134). As of June 22nd 2011, 562 cases of H5N1 virus infections in humans and 329 deaths have 
been reported in 15 different countries (WHO, 2011). Even if human-to-human transmission has 
been limited, H5N1 is believed to be a significant health threat due to “spill-over” infections in 
humans associated with widespread infection in poultry populations (16, 111). The single mutation 
HA-Q192H in some H5N1 strains isolated from humans increased viral binding to SA-alpha 2-6Glu, 
correlating as well with an increased virulence in mice (139). However, mutations enhancing the 
binding to SA-alpha 2-6Glu are not in themselves sufficient for host switching and transmission, 
meaning that other virus factors may be involved (52, 71, 74, 133). In this regard, the adaptation of 
the IAVs polymerase to host factors is an important mechanism underlying interspecies transmission 
(64). Besides to the PB2-E627K mutation present in some H5N1 strains (35, 124), mutations as PB2-
T271A (14), PB2-Q591K (145) and PB2-D701N (47, 82, 100, 121) have been associated with elevated 
avian polymerase activity in human cells, replication and transmissibility in guinea pigs and with an 
increased transport of PB2 into the nucleus of mammalian cells. 

Prior to 2003, infection with H7 viruses was not considered a serious health threat, although 
some H7 outbreaks in poultry were sporadically associated with conjunctivitis in humans (10,116). 
However, the H7N7 HPAI outbreak in the Netherlands in 2003, during which 86 people involved in the 
culling operation and 3 in-contact persons were infected, prompted a re-evaluation of the human 
health risks attributed to this virus (9, 27). The majority of H7 infections in humans have resulted in 
self-limiting conjunctivitis with occasional mild respiratory illness (1, 18, 58), and this is linked to the 
presence of SA-alpha 2-3Glu linkages in corneal and conjuctival epithelial cells of the human eye (1, 
10).   

During the 2003 H7N7 Dutch outbreak, different mutations in the polymerase complex, HA, NA 
and NS1 were found in viruses isolated from a fatal case (FC) when compared to strains isolated from 
conjunctivitis cases (CC). Among these mutations, PB2-E627K was the main determinant of virus 
pathogenicity, whereas the HA-A143T mutation correlated with viral attachment to human alveolar 
macrophages (27). Additionally, viruses from FC presented the PB2-D701N, PB2-S714R and PA-K615N 
mutations, which conferred an increased polymerase activity in mammal cells at relatively low 
temperatures (27, 38, 64). 
 H9N2 LPAI viruses have become enzootic in domestic poultry populations of many Eurasian 
countries, causing human infections characterized by influenza-like symptoms (15, 138). Since H9N2 
viruses have been isolated from pigs and humans (148), they are believed to be potential pandemic 
candidates (20, 114,122). Molecular characterization of H9N2 viruses circulating in the Middle East 
and Asia have revealed that more than 70% of the viruses contained the HA-L226 signature, which 
modifies receptor preference to SA-alpha 2-6Glu linkages (42, 115, 138). Along the same lines, Sorrell 
et al. (2009) demonstrated that the combination of four key amino acid residues at the RBS of the HA 
(H183, A189, E190 and L226) in a chimeric virus carrying the surface proteins of avian H9N2 in a 
human H3N2 backbone, are essential for transmission in ferrets. Additionally, the PB2-E627K 
mutation in mouse-adapted H9N2 viruses was correlated with increased virulence in mammals (141).  
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To date, swine influenza viruses (SIAV) H1N1, H3N2 and H1N2 subtypes are circulating in swine all 
over the world (63, 79). Classical swine H1N1 viruses (cSIAV) presumably emerged from the 1918 
pandemic, circulating and reassorting with other viruses to give rise to the ‘triple reassortant’ H3N2 
SIAV. Independently, an ‘avian-like’ H1N1 SIAV emerged in Europe (21). Phylogenetic analysis of 
different SIAVs showed that cSIAVs analyzed possess the HA-E190D mutation (H3 numbering), which 
is required to switch the host-specificity. In addition, cSIAVs possess the ‘avian signature’ HA-225G, 
whereas in the European lineage this signature is variable (G225E or G225K). Interestingly, the 
European ‘avian-like’ H1N1 lineage possesses the PB2-D701N that may play a role in mammalian 
adaptation (32). 

 
  5.2 Reassortments  

Since the genome of IAVs consists of eight separate RNA segments, co-infection of one host cell 
with two different strains can result in progeny viruses containing gene segments of both parental 
viruses (23, 41). Theoretically, there are 256 possible combinations of the eight genes segments 
between two viruses (126). Swine are considered as the main candidates for generating reassortants 
viruses between human and avian IAVs (17, 66). Available reports have demonstrated the isolation of 
whole avian and human IAVs in pigs (21, 95), meanwhile complete genomic analyses have confirmed 
the reassortment of swine, avian and/or human viruses in pigs worldwide (72, 88, 110), as recently 
reported in China (26). Importantly, swine are also capable of transmitting reassortant viruses to 
humans, as demonstrated during the last 2009 pandemic (13, 44). 

The sporadic detection of H9N2 IAVs in domestic pigs and humans (28, 99), as well as their co-
circulation with other IAVs, have provided the conditions to lead H9N2 viruses to evolve and generate 
multiple novel genotypes through reassortant events (29, 115). Fusaro et al., (2011) reported 
significant inter- and intra- subtype reassortments associated to specific amino acid substitutions that 
are believed to result in increased transmissibility in mammals. To date, an inter-subtype 
reassortment has been detected between H9N2, H5N1 HPAI and H7N3 viruses in China (148) and in 
Pakistan (2, 29, 53). In vivo studies have demonstrated that a reassortant virus containing the surface 
glycoprotein genes from H9N2 and the six internal genes of a human H3N2 virus (138), as well as a 
reassortant virus carrying the HA of H9N2 in the background of a H1N1 S-OIV (62), were both able to 
replicate and be transmitted from ferret to ferret.  

Amongst reassortment dynamics of internal IAV gene segments, an avian-origin PB1 segment is 
present both in the H2N2/57 and in the H3N2/68 pandemic strains. This suggests that the 
reassortment of polymerase subunit genes between mammalian and avian IAVs might play a role for 
interspecies transmission (31). To test this hypothesis, Li et al. (2009) studied the compatibility 
between avian H5N1 and human H1N1 polymerases, observing that recombinant viruses carrying the 
PB2-H1N1 and PB1-H5N1 had a stronger polymerase activity in cell culture. Furthermore, a study 
demonstrated that in vivo co-infection with avian H5N1 and human H3N2 viruses of ferrets generated 
reassortant viruses containing genes from both progenitor viruses (55).  

 
      6.     Genetic markers 

The surveillance of genetic markers (changes in the viral genome) of adaptation could help the 
prediction of the risk of an epidemic emergence (98). Previous studies have reported 52 (22), 32 (33) 
and 17 (80) ‘species-associated signatures’ between avian and human IAVs. Unfortunately, these 
methods did not take into account the phylogenetic relationship of the isolates and treated each 
sequence as an independent observation, resulting in an over-estimation of statistical significance 
(123). Other studies reported 18 mortality markers (3), 172 markers under selective pressure during 
avian-to-human switch (124) and 68 conserved mutations in 8 internal proteins (81). In addition, 42 
markers have been reported in mouse-adapted H9N2 viruses (141) and 10 in mouse-adapted H1N1 S-
OIVs (51). Although the identification of genetic markers is not a trivial task and mechanisms of viral 
adaptation in mammals is thought to be polygenic, a great number of the mutations identified to date 
involve the IAV polymerase complex genes (38, 39, 80, 82, 145).    
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At present, the study of GC content in each gene segment has been referred to as possible 
indicator of the evolutionary process, showing that avian-origin IAVs have a higher GC content than 
human-adapted viruses (45, 57). Similar changes in nucleotide composition with a diminished in GC 
content were also evident in swine-adapted IAVs (32). The biological basis for these observations is 
still unclear (126).       
 
7.  Pandemic overview  

To date, only viruses of the H1, H2 and H3 subtypes are known to have caused pandemics 
(10,125). It has been estimated that there have been at least 13 pandemics in the last 500 years, 
including 4 scientifically well-documented ones in the 20th century (64, 127). Although the origin of 
the “Spanish” Influenza pandemic (1917-18) has not been fully resolved, is thought that an avian-like 
H1N1 virus was involved (46, 128). Alternatively, it may have evolved in swine prior to its emergence 
(113). Since then, there have been two major influenza pandemics (1957 and 1968) caused by H2N2 
and H3N2 subtypes, respectively. Both strains originated by reassortment between the existing 
“seasonal” strain and an animal virus. The human viruses seem to have acquired three avian 
segments (HA, NA and PB1), as in the case of the pandemic of 1957 (69,113), and two avian segments 
(HA, PB1) in the case of the pandemic of 1968 (30). The other segments are believed to have been 
circulating in humans and pigs since the 1918 pandemic. Until 2009, H3N2 and H1N1 (re-introduced in 
1977) were still circulating in the human population (64).  

In early April 2009, the H1N1 S-OIV emerged in Mexico and in the United States and spread 
rapidly around the world, causing the World Health Organization (WHO) to raise its pandemic alert 
from level 5 to level 6 (43, 73, 132). The H1N1 S-OIV derived its NA and M gene segments from the 
European ‘avian-like’ H1N1 lineage and its remaining six gene segments from the North American 
swine H1N2 ‘triple’ reassortant lineage (23). The HA, NP and NS genes segments derived from cSIAV 
H1N1, while the polymerase gene segments PB2 and PA derived from avian source and PB1 from a 
human seasonal H3N2 (112, 144). It was established that the virus had already been circulating in 
swine for more than 10 years (25, 30) and that the transmission from pigs to humans had occurred 
several months before the outbreak (40). The H1N1 S-OIV has evolved rapidly due to positive 
selection (67, 83, 105, 142). The H1N1 S-OIV has the D190/D225 signature, supporting the efficient 
transmissibility among humans, although some recent strains possess the HA-D225G/E mutation, 
which allow the viruses to have dual hosts (pigs and humans) (23). In addition, HA-D222G mutation 
has been involved in severe infection outcomes in humans (21, 61). On the other hand, HA-E391K 
mutation has been associated with the fitness of the virus (75, 76) and it has been reported that 
H1N1 S-OIV lacks both PB2-E627K and PB2-D701N mutations (24, 50).   

On June 8th 2011, the first case of co-infection with seasonal H3N2 and H1N1 S-OIV, followed by 
in vivo reassortment in humans was reported in Canada. The phylogenetic analysis demonstrated that 
the reassortant virus consisted of HA and NA of H3N2 and the remaining genes of H1N1 S-OIV 
(proMED, 2011). Human mixed infections of H1N1 S-OIVs and seasonal H3N2 viruses were reported in 
China (70) while an infection with a triple-reassortant SIAV H1N1 distinct from H1N1 S-OIV containing 
the HA and NA genes of seasonal H1N1 virus was detected in Canada (6, 106). On the other hand, 
H1N1 S-OIV is able to re-infect swine (87, 140) and to reassort with other viruses circulating in swine 
herds, as reported to have occurred in Canada (93), Hong Kong (23) and China (151). A study 
demonstrated that reassortant viruses containing the HA gene from a seasonal H1N1 on a H1N1 S-
OIV background showed enhanced growth in cell culture (97). However, a limited compatibility 
among polymerase subunits from different IAVs must be considered as a restricting factor for 
reassortment (96). 

 
8.  Summary 

- The host-range restriction of IAVs is a multigenic trait, which includes genes that encode viral 
surface glycoproteins, proteins involved in the viral replication and in those that counteract the 
host immune response. 
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- SA receptors influence the host range. Some species other than swine could play an important role 
as ‘mixing vessels’ due to the dual presence of alpha 2-3 and alpha 2-6 receptors in their respiratory 
tract.    

- New IAVs strains emerge through the accumulation of mutations, natural reassortment and 
adaptation to their new host. Mutations in the RBS of the HA protein of avian IAVs may change the 
binding preference towards the human host. However, the evolution and adaptation of IAVs is 
complex and polygenic, involving several viral genes and other unknown host factors.  

- H5N1 HPAI viruses are still to be considered as a significant threat for public health. Some H9 avian 
AIVs have the ability to bind to alpha 2-6 receptors, and the strong evidence of reassortment with 
other IAVs emphasize their potential to emerge as possible pandemic strains.  

- H1N1 S-OIV is evolving rapidly and reassorting with other IAVs that are currently circulating. 
- Several genetic markers in IAVs genes have been reported, mainly associated with host restriction, 

tropism, virulence, modulation of host immunity, as well as with replication and transmission. 
However, the full understanding of the correlation between molecular markers and biological 
properties is yet to come. 

 

9.  Knowledge gaps and future work 

-  To investigate the role of animal species other than swine as possible ‘mixing vessels’, by studying 
their pattern of distribution of SA receptors. Due to non-specific reactions, it is necessary to 
optimize the use of lectins as probes for histochemistry tests. 

-  Further investigations are needed to clarify the factors governing reassortment in IAVs.  
- To conduct researches on human and host genes involved in modulation of IAVs infection.  
- Strengthening the use of molecular methods to study the IAVs evolution: (i) large-scale genomic 

sequencing to improve the surveillance of mutations and gene constellations showing pandemic 
potential in all IAVs subtypes; (ii) bioinformatic analyses to study the spatio-temporal evolution 
dynamics of IAVs, to identify mutations under positive selection and protein structural prediction; 
(iii) ‘deep sequencing’ in order to monitor within host viral population diversity. 

- To update and share sequences of all IAVs in public databases. The addition of epidemiological and 
ecological data is also strongly recommended.   

- There is a strong need to study the occurrence of infection of other IAVs (such as H1, H2, H3 and H9 
subtypes) in humans and animals.  

- To implement a systematic cross-sectional and longitudinal sampling in both host and reservoir in 
order to mapping the genetic changes occurred during viral adaptation. 

- To strengthen the collaboration between public and veterinary health sectors to support the 
systemic and extensive surveillance of animal IAVs (including healthy animals) in order to provide 
early evidence of emerging viruses. 

 
Table 1. Principal amino acid mutations and signatures associated with interspecies transmission of Influenza A 
viruses 

 

Gene Mutation Effect Strain Reference 

 
HA 

E190D 
G225D 

-Viral strains with residues D190/D225 are human-specific, 
D190/G225 swine-specific and E190/G225 avian-specific. 
-Mutations in these residues cause a switch in receptor 
binding preference from alpha 2-3 to alpha 2-6 SA 

H1N1/1918 
 
H1N1 
cSIAVs  
 
European 
‘avian-like’ 
swine H1N1 

23,32, 
124, 126 

D225G/E -Enhances receptor binding to dual hosts (pigs and humans) H1N1 S-OIV 23 

D222G -Enhances binding to SA-alpha 2-3Glu receptors H1N1 S-OIV 21,24,39, 
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-Associated with severe infection outcome in humans 61, 105 

Q192R 
G139R 
N182K 

 
 
-Enhance binding to human-type receptors in vitro 
 
 

H5N1 
 
4 
 

Q192H -Increases binding to SA-alpha 2-6Glu and virulence in mice H5N1 139 

Q226L 
G228S 

-In H2 and H3 viruses 226Q and 228G correlate with binding 
to avian receptors; 226L and 228S correlate with the shift 
from avian to human receptor binding 

Human 
isolates 

4, 11, 146 

226L 
-Signature which exhibits preferential binding to human-like 
SA-alpha 2-6Glu receptors. A key element for the successful 
infection of humans 

H9N2 42 

A143T -Increases viral attachment to human alveolar macrophages H7N7 27 

E391K -Associated with the fitness of the virus H1N1 S-OIV 75, 76 

T160A 
-Required to sustain the avian virus transmission in guinea 
pig model 

H5N1 146 

K193R 
-Decreases binding to SA-alpha 2-3Glu or increases binding 
to SA-alpha 2-6Glu 

H5N1 11 

 
PB2 

E627K -Avian strains have 627E and human strains 627K signature. 
-Associated with increased transmission. Important 
determinant of host range  
-Increases polymerase activity in mammalian cells at 
relatively low temperatures 

H1N1/1918 
 
H5N1 

 
38, 39, 78, 
85, 101 

 
-Determinant of host range. Increases transcription at a low 
temperature 

H7N7 
isolated 
from human 
FC 

27 

 -Increases virulence in mammals 
Mouse- 
adapted 
H9N2 

115, 138, 
141 

D701N -Enhances the binding of PB2 to importin alpha 1, increasing 
the level of PB2 in the nucleus in mammalian cells. 
Important role in the interspecies transmission of IAVs 
-Increases polymerase activity in mammal cells at relatively 
low temperatures 

Some HPAI 
H5N1 
strains 

14, 47, 68, 
82, 100, 
121 
 

 -Involved in mammalian adaptation 
European 
‘avian like’ 
swine H1N1 

32 

 
-Increases transmissibility of Influenza A viruses in guinea pig 
model 

H5N1 145 

 -Enhances the polymerase activity in mammalian cells 

Avian- and 
mouse- 
adapted 
H7N7  

 
 
14, 47, 64   
 

S714R -Enhances the polymerase activity in mammalian cells H7N7 64 

K318R 
-Correlates with high pathogenicity in mice in the presence 
of additional mutations 

H5N1 4 

T271A 
-Enhances activity only at higher temperatures (37 and 39°C) 
-Contributes to avian polymerase adaptation to mammalian 

H5N1 14  
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hosts 

Q591R/K 
-Enhances viral replication in human cells and involved in 
mammalian adaptation 
-Compensates the lack of PB2-E627K mutation in the S-OIV 

HPIA H5N1 
 
H1N1 S-OIV 

145 

G590S 
-Associated with mammalian pathogenicity and enhanced 
replicative ability in mammals 

H1N1 S-OIV 36, 78 

A684S 
-Associated with host shift from avian to swine and the 
subsequent transfer to humans 

Avian IAVs 124 

 
E158G 

-Probably associated in the adaptation of avian PB2 genes to 
mammals (mouse model) 

Avian H5N9 
LPAI H5N2 

152 

 
PB1 

L13P -Enhances the activity of viral polymerase H7N7 4 

G375S 
-Associated with adaptation to a new species (swine to 
human) 

H1N1 146 

 
K577E/M 
K578Q 
 

-Increase virulence and polymerase activity in mouse model 
H3N2 
human 
isolates 

101 

 
PA 

 
K615N 

-Enhances activity of viral RNA polymerase and stimulates 
viral replication and pathogenicity in mouse model 

H7N7 38,64 

K356R 
-Associated with host shift from avian to swine and the 
subsequent transfer to humans 

Avian IAVs 124 

  
T85I 
G186S 
L336M 
 

-Multiple residues that contribute to the enhancement of 
avian polymerase activity in mammalian cells which is 
essential for mammalian host adaptation 

H1N1 S-OIV 14 

 
NP 

 
N319K 
 

-Increases binding to mammalian importin alpha 1 proteins 
and polymerase activity. Related to host range specificity.  

 
H7N7 
 

47 

V100I -Increases transmissibility among humans H1N1 S-OIV 23  
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